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We solve the nonlinear heat-transfer problem in a semitransparent optically thick body by the
finite-differences method in combination with the small-parameter method.

The heat-transfer processes in nonlinear media have been given considerable attention in recent years.
Investigators are generally familiar with the heat~conduction equations related to high-temperature processes
when the thermophysical properties of the medium vary with the temperature, However, the nonlinearity may
also be due to internal causes and attributable to the properties of the material,

In the present study we consider the thermal field of a semitransparent, hard, optically thick body with
a direct current fed to its surface. Part of the current is reflected from the surface of the body, while the
remaining part, passing through the body, is continuously attenuated because of internal absorption by the
material. Radiant transfer of energy takes place within the body. This effect leads to the appearance of a non-
linear term in-the heat-balance equation [1, 2]. ’

The temperature inside the body will satisfy the equation

= div (A grad T+ F).

cp

Here c, p, A are the heat capacity, density, and thermal conductivity of the medium, respectively; T, tem-
perature; t, time; F, radiant-energy flux.
40

O

F= grad T’*,

where o is the Stefan—Boltzmann constant; ap is the coefficient of absorption of the radiation.

L. Finite-Difference Method. Suppose that the body is a plate of finite thickness and unbounded length:

oT ., &T , , O°T*
OT _ 2 OT 2 91" 1
Pk w Y (1)

T(x, 0)=0, To(0, ) =0, —Tx(l, t)+-l‘-7—=0, (2)

g is the constant flux on the external surface; a® = A/cp; a? = 49/3cpgp < 1.

" We construct the difference system for problem (1)-(2):
T U p1 — Ugsd = @072 U1 041 — 2Uj o1 + Ujmt e 1 4

+ A2 (402U, (Ujs1 pp1 — Uppgr) — 402Uy w (Ug apr — Ujmg )1, 3)
U.70 = 01 UOk = Uih; UNR”‘UN—I,FI. = hq]“? j=01 17 ey N; (4)
k=0, 1, ...

This scheme approximates problem (1), (2) to the order O(1 + h), where h is the step along the x axis and
7 is the step along the t axis. Let Uh be the grid function. We write
R U= (a®+ 4a2U3) th"®U;t1 o1 + (@+ 42U, 4) th Uit —
— [142a2th-2—402th™2 (U}’h 4+ U;?‘_l ) Ujrti +Up =0, (5)
Wr=Uyp—Up=0, le"EUNh—UN_;_k=hql“. (6)
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We make use of the Babenko—Gel'fand criterion [3]: problem (5)-(6) is stable if the set of eigenvalues
of each of the following three problems:

RUFE=0,Ujp=0, j=0, =1, +2, ...; Ujpp—>0 (7)

Fina~Ld

(the coefficients for Uja4,k+4> Uj,k+1, Uj-1» k+ ¢ are frozen at an arbitrary interior point (x, t), 0 <x <, 0 <
L<T),

RU® =0, Lt =0, j =10, I,...;Ujh;zo (8)

(the coefficients for Uj+t,k#1s Ujketr Uj=1,k+1 are frozen at the point (0, t)),
RU=0, LUF=0, j=0, —1, —2, ...; Upp——0 (9)

joe
(the coefficients for Ujiykes, Uj ke Uj-1,k+ are frozen at the point (I, t)) lies in the unit disk.

Investigating problem (7), we find the spectrum of the difference operator, passing from layer t to
layer {j+; at the interior points of the region, disregarding the boundary conditions.

In investigating problem (8), we take account of the effect of the left-hand boundary condition but disre-
gard the right-hand condition, and vice versa in the case of (9).

1. We consider the problem (7). We shall try to find a solution of this equation in the form
Ujp = MZi, (10)
Substituting (10) into (7), we obtain

ANTIZIH — BAWRIZE - CAPHIZI=Y 4 0RZ1 = 0,

Here
A=th2 (@ + 4PV}, ); C = th2 (a2 4 402U3 | ); B=1+A+C. (11)
Suppose that the coefficients A, B, C are frozen at an arbitrary interior point. We find Z:
MAZR—BZ +Cl=—2Z, A (B—AHZ+C=0,
1 I
—_ 4= — %2
Zy,9= oA [B—A1xV(B—A12—4ACI. (12)
If Z= Zi, at Z = Z,, then (10) is the solution of problem (7).
Function )\th can remain bounded only when I Zl =1, i.e., Z = exp(i@). Therefore, the solution of
problem (7) must be sought in form A® exp (i¢), where it follows from (11) that

1 L . , :
— = 1+ 4athsin % — doPth 2 (U3, (9 — 1) +- UL, , (e=i® — 1)].

Since « is small by hypothesis, it follows that [A|< 1 for any 7, h.

2. We consider problem (8). Its solution must satisfy the condition Uik = 0 and consequently has the
form gZIZ{, | Zy] < 1s Unsd

Uin =g 4™ [B— 1t —V (B— 197 —4AC].
The value of A must be found in such a way that Ujk satisfies the boundary condition
WP =Up—Up =0, g(Z— 1) = 0.
But | Z| # 1; consequently, g = 0 and problem (8) has no eigenvalues.

3. We consider problem (9). We shall try to find its solution in the form Ujk = gZi{. By a reasoning
analogous to the previous case, we see that problem (9) has no eigenvalues.

Thus, the set of eigenvalues of problems (7)-(9) lies in the unit disk. By the Babenko~Gel'fand criterion,
problem (3)-(4) is stable.

II. Small-Parameter Method. In investigating a process it is often necessary to know how the nonlinear-
ity on the right side affects the solution and how the solution of the linear equation and the solution of the equa~
tion with the added nonlinear term are related. In our case we are interested in establishing the effect of the
radiant-energy source (40/3ap)grad T? on the thermal state of the body.
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To do this, we used the small-parameter method. It is convenient to use a dimensionless quantity as the
parameter. Therefore, we reduce (1)-(2) to the dimensionless form

14 v . R+ Vp
= — M ’

dFo  oy? dy? (13)
V(y, 0) = 0, Vyly=0 = 0, Vny=1 = Ki
by means of the change of variables
2, —
Fo— 2t y=-, T,=293K, V= =T,

! l [}
40T} __d
T 3aZpa, ' T aPepT,

The solution of problem (13) will be sought in the form of a series in powers of the parameter u:

V=V,+uV,+uV, + ... (14)
Substituting (14) into (13), we compare the coefficients for equal powers of u and obtain the sequence of
solutions
dFo oz
aV, o2V, . 2V

=—2 4 12(14VRV, P41V, L,

3Fo Fm + FVPV E+40+TY P (15)
oV %V, , .
6—11% __6;/—213 + Vi ooy Vaets Vigy ooy Vieeny)

We solve the first equation for the original initial and boundary conditions, and all the other equations
for zero conditions. The solution of the problem

ov, _ o,
aFo oy’
(16)
Vi (yr 0) = O: V;y;y:l) = 0, Vl'y,ly=l = Ki
by the finite-difference method can be carried out without difficulty, and we shall not discuss it further.
The function V, is a solution of the problem
v, oV, . oV,
—2 =2 L 12(1 VRV 2 A(1+ V)8 )
3Fo P + 12014+ VR V] )2+ +Vy Fm
. . (17)
Valy, 0) = V2y'y=0 = V2yly=l =0,
Using the grid yj = jh, (Fo)k = kT, we construct a difference scheme approximating problem (17):
Uinpr —Ujn) K27t = Ui o1 — Ui e + Ujetpr + LG (18)
Ujp=0, Up =Up, Unn= Uy,
Here
RFE =120+ Vi e P WVian — Vel + 41+ Viian P Wiisiasn — 2V e + Vi anl,
£

okt is a known function, since the values of V, at the points of the grid have already been found from (16).
14

It is not difficult to see that all the eigenvalues A of the difference operator of the linear problem (18) lie in
the unit disk:

. (P —1
A= (1 + 4a2th2 sin —2—) .

Consequently, scheme (18) is stable.

After obtaining V,, weproceedto solve the third equation, etc. The difference scheme for the n-th ap-
proximation has the form
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Fig. 1. Dimensionless temperature V as a
function of dimensionless time Fo for values
of the criterion Ki = 0.5 (1); 1.0 (2); 2.0 (3);
3.0 (4) for problem (19)-(20). The solid
curves indicate the solution of the problem by
the small-parameter method with two terms
of the expansion (15), and the dashed curves
represent the solution of the problem obtained
by method of simulation on the R grid analog.

Uiper — Uss) w2 = Uppr o1 — i s+ Upmraer + P
Ujp=0, Upp=Usn, Une=Un-1p.

This scheme differs from (18) only in the form of the free term, which is a function of the previously found

quantities Vy, ..., Vp~1 (Vi)ys...,(Vp-y)y. If in the expansion in terms of the parameter we take, e.g., three
terms, then the calculation can be conveniently carried out as follows:

1) find the values of V; on the first time layer Fo =T}
2) calculate the values of fﬁ) on the layer Fo = 7;
3) find the solution of problem (18}, i.e., the values of V,, on the layer Fo =T

4) calculate the values of the right-hand side fﬁ) of the following difference problem on the layer
Fo =13

5) find the approximate values of V; on the layer Fo =r7;

6) setup Vy+ uv, + .u2V3. We obtain an approximate solution of problem (1)~(2) at the points of the grid
for Fo =713

7) repeat operations 1)-6) for Fo = 271, 37,...

We shall show how the above methods are used in solving the following heat-transfer problem in an op-
tically thick plate:

av 0 ov
=— | +4ul Ve 2|0 1;
3F ~ or [( +4p(l+V) = J <x<< | (19)
Vix, 0)=0, v -0, v | — Ki: 20)
0xX ly—o ox !x:l
p= 46T5/3Mt,, & = 5.69-107° w/m?«(deg K)*, To= 293°K,
%y = 100m—!, A = 1.185W/m-deg K, Ki = 0.5; 1.0; 2.0; 3.0,

V is the dimensionless temperature.

The solution of this problem by the small-parameter method with two terms in the expansion (15) is
shown in Fig. 1 (solid curves). The graphs are taken from [1]. As the small parameter we took u = 0.0161.
Figure 1 also shows the graphs of the solution of problem (19)-(20) (dashed curves), which were obtained by
the method of simulation on the R grid analog. We used the implicit difference scheme (5) written in the form
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k WViprr — Vel = 11 + 41 + Vg1 21 Vigr 21 — Vil —
T

— N4+ 4p(l + VPl Vi — Vi pnl, i=1, ..., N—1L:
Vie=0,Vor =V, Var—Vn_ip =KL

(21)

We selected h = 0.1, 7 = 0.05.

It can be seen from the graphs that for 0 =< Ki = 1 the temperature fields calculated by the small-
parameter method with two terms of the expansion (15) agree fairly well with the solution of the problem (21).

It was established experimentally that for 2 < Ki < 3 taking account of the third term of the expansion
in powers of the small parameter in (15) yields a temperature field which practically coincides with the fields
calculated from (21),

The third term is determined from the conditions:
oV,
dFo

Vi(x, 0) =0, V|

3xjx==

= (V H V" ’
Fye + [V, Vy)

(22)

o=V 1 =0

;x,x=

=120+ VRV V, + V] I+40+ VPV, 424V, (14 V) [V 2

2xx

The values of V; and V, are taken from [1].

Equation (22) was also simulated on the R grid analog. We used the difference scheme of (18), in the
form )
Vier1i — Vi - Vieraer — 2Vipgs + Vi an
T h2

Vie=0, Voo =Vin, Vo =Vy_y,n.

+ froet1,

LITERATURE CITED

1. A. A, Kosarev, Author's Abstract of Candidate's Dissertation, Voronezh State University (1978).

2. E. N. Ryabinova and P, V. Cherpakov, Mathematical Physics (An Interuniversity Thematic Collection of
Scientific Articles) [in Russian}, Kuibyshev (1976),

3. P. V. Cherpakov, Theory of Regular Heat Exchange [in Russian], iZnergiya, Moscow (1975).

316



